Diclofenac in fish: Blood plasma levels similar to human therapeutic levels affect global hepatic gene expression
Filip Cuklev
Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
Search for more papers by this authorErik Kristiansson
Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
Search for more papers by this authorNoomi Asker
Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
Faculty of Science, University of Gothenburg, Göteborg, Sweden
Search for more papers by this authorLars Förlin
Faculty of Science, University of Gothenburg, Göteborg, Sweden
Search for more papers by this authorCorresponding Author
D.G. Joakim Larsson
Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden.Search for more papers by this authorFilip Cuklev
Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
Search for more papers by this authorErik Kristiansson
Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
Search for more papers by this authorNoomi Asker
Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
Faculty of Science, University of Gothenburg, Göteborg, Sweden
Search for more papers by this authorLars Förlin
Faculty of Science, University of Gothenburg, Göteborg, Sweden
Search for more papers by this authorCorresponding Author
D.G. Joakim Larsson
Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden.Search for more papers by this authorAbstract
Diclofenac is a nonsteroidal anti-inflammatory drug frequently found in the aquatic environment. Previous studies have reported histological changes in the liver, kidney, and gills of fish at concentrations similar to those measured in treated sewage effluents (approximately 1 µg/L). Analyses or predictions of blood plasma levels in fish allow a direct comparison with human therapeutic plasma levels and may therefore be used to indicate a risk for pharmacological effects in fish. To relate internal exposure to a pharmacological interaction, we investigated global hepatic gene expression together with bioconcentration in blood plasma and liver of rainbow trout (Oncorhynchus mykiss) exposed to waterborne diclofenac. At the highest exposure concentration (81.5 µg/L), the fish plasma concentration reached approximately 88% of the human therapeutic levels (Cmax) after two weeks. Using an oligonucleotide microarray followed by quantitative PCR, we found extensive effects on hepatic gene expression at this concentration, and some genes were found to be regulated down to the lowest exposure concentration tested (1.6 µg/L), corresponding to a plasma concentration approximately 1.5% of the human Cmax. Thus, at concentrations detected in European surface waters, diclofenac can affect the expression of multiple genes in exposed fish. Functional analysis of differentially expressed genes revealed effects on biological processes such as inflammation and the immune response, in agreement with the mode of action of diclofenac in mammals. In contrast to some previously reported results, the bioconcentration factor was found to be stable (4.02 ± 0.75 for blood plasma and 2.54 ± 0.36 for liver) regardless of the water concentration. Environ. Toxicol. Chem. 2011;30:2126–2134. © 2011 SETAC
Supporting Information
All Supplemental Data may be found in the online version of this article.
Filename | Description |
---|---|
etc_599_sm_SupplFigS1.doc377.5 KB | Supplemental Figure S1 |
etc_599_sm_SuppTabsS1-S5.xls1.6 MB | Supplemental Table S1-S5 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Iqbal Chaudhry MJ, Arshad M, Mahmood S, Ali A, Ahmed Khan A. 2004. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427: 630–633.
- 2 Shultz S, Baral HS, Charman S, Cunningham AA, Das D, Ghalsasi GR, Goudar MS, Green RE, Jones A, Nighot P, Pain DJ, Prakash V. 2004. Diclofenac poisoning is widespread in declining vulture populations across the Indian subcontinent. Proc Biol Sci 271 (Suppl 6): S458–S460.
- 3 Figueras A, Capellà D, Castel JM, Laporte JR. 1994. Spontaneous reporting of adverse drug reactions to non-steroidal anti-inflammatory drugs. Eur J Clin Pharmacol 47: 297–303.
- 4 Iveson T, Ryley N, Kelly P, Trowell J, McGee J, Chapman R. 1990. Diclofenac associated hepatitis. J Hepatol 10: 85–89.
- 5 Lauer B, Tuschl G, Kling M, Mueller SO. 2009. Species-specific toxicity of diclofenac and troglitazone in primary human and rat hepatocytes. Chem-Biol Interact 179: 17–24.
- 6 Vane JR, Botting RM. 1997. Mechanism of action of aspirin-like drugs. Semin Arthritis Rheum 26: 2–10.
- 7 Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD. 2004. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: Histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68: 141–150.
- 8 Triebskorn R, Casper H, Heyd A, Eikemper R, Kohler HR, Schwaiger J. 2004. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part II: Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 68: 151–166.
- 9 Mehinto AC, Hill EM, Tyler CR. 2010. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 44: 2176–2182.
- 10 Brown JN, Paxéus N, Förlin L, Larsson DGJ. 2007. Variations in bioconcentration of human pharmaceuticals from sewage effluents into fish blood plasma. Environ Toxicol Pharmacol 24: 267–274.
- 11 Fick J, Lindberg RH, Parkkonen J, Arvidsson B, Tysklind M, Larsson DGJ. 2010. Therapeutic levels of levonorgestrel detected in blood plasma of fish: results from screening rainbow trout exposed to treated sewage effluents. Environ Sci Technol 44: 2661–2666.
- 12 Ternes TA. 1998. Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32: 3245–3260.
- 13 Hardman JG, Limbard LE, Gilman AG, eds. 2001. The Pharmacological Basis of Therapeutics. McGraw-Hill, New York, NY, USA.
- 14 Juhlin T, Björkman S, Gunnarsson B, Fyge Å, Roth B, Höglund P. 2004. Acute administration of diclofenac, but possibly not long term low dose aspirin, causes detrimental renal effects in heart failure patients treated with ACE-inhibitors. Eur J Heart Failure 6: 909–916.
- 15 Hoeger B, Dietrich DR, Schmid D, Hartmann A, Hitzfeld B. 2008. Distribution of intraperitoneally injected diclofenac in brown trout (Salmo trutta f. fario). Ecotoxicol Environ Saf 71: 412–418.
- 16 Huggett DB, Cook JC, Ericson JF, Williams RT. 2003. A theoretical model for utilizing mammalian pharmacology and safety data to prioritize potential impacts of human pharmaceuticals to fish. Hum Ecol Risk Assess 9: 1789–1799.
- 17 Fitzsimmons PN, Fernandez JD, Hoffman AD, Butterworth BC, Nichols JW. 2001. Branchial elimination of superhydrophobic organic compounds by rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 55: 23–34.
- 18 Chung H, Kim H-J, Jang K-S, Kim M, Yang J, Kim JH, Lee Y-S, Kong G. 2006. Comprehensive analysis of differential gene expression profiles on diclofenac-induced acute mouse liver injury and recovery. Toxicol Lett 166: 77–87.
- 19 Gunnarsson L, Kristiansson E, Rutgersson C, Sturve J, Fick J, Förlin L, Larsson DGJ. 2009. Pharmaceutical industry effluent diluted 1:500 affects global gene expression, cytochrome P4501A activity and plasma phosphate in fish. Environ Toxicol Chem 28: 2639–2647.
- 20 Kristiansson E, Asker N, Förlin L, Larsson DGJ. 2009. Characterization of the Zoarces viviparus liver transcriptome using massively parallel pyrosequencing. BMC Genomics 10: 345.
- 21 Gunnarsson L, Kristiansson E, Förlin L, Nerman O, Larsson DGJ. 2007. Sensitive and robust gene expression changes in fish exposed to estrogen—a microarray approach. BMC Genomics 8: 149.
- 22 Shareef A, Angove MJ, Wells JD. 2006. Optimization of silylation using N-methyl-N-(trimethylsilyl)-trifluoroacetamide, N,O-bis-(trimethylsilyl)-trifluoroacetamide and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide for the determination of the estrogens estrone and 17 alpha-ethinylestradiol by gas chromatography–mass spectrometry. J Chromatogr A 1108: 121–128.
- 23 Rouillard JM, Zuker M, Gulari E. 2003. OligoArray 2.0: Design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res 31: 3057–3062.
- 24 Gunnarsson L, Jauhiainen A, Kristiansson E, Nerman O, Larsson DGJ. 2008. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ Sci Technol 42: 5807–5813.
- 25 Davis AP, Murphy CG, Saraceni-Richards CA, Rosenstein MC, Wiegers TC, Mattingly CJ. 2009. Comparative Toxicogenomics Database: A knowledgebase and discovery tool for chemical–gene–disease networks. Nucleic Acids Res 37: D786–D792.
- 26 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
- 27 Uniprot. 2008. The universal protein resource (UniProt). Nucleic Acids Res 36: D190–D195.
- 28 Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Rios D, Schuster M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Kasprzyk A, Proctor G, Smith J, Searle S, Flicek P. 2009. Ensembl 2009. Nucleic Acids Res 37: D690–D697.
- 29 Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
- 30 Bolstad BM, Irizarry RA, Astrand M, Speed TP. 2003. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.
- 31 Smyth GK. 2004. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statist Appl Genet Mol Biol 3: article 3.
- 32
Benjamini Y,
Hochberg Y.
1995.
Controlling the false discovery rate: a practical and powerful approach to multiple testing.
J Roy Stat Soc Ser B Methodol
57:
289–300.
10.1111/j.2517-6161.1995.tb02031.x Google Scholar
- 33 Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. 2009. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10: 48.
- 34 Eisenberg E, Levanon EY. 2003. Human housekeeping genes are compact. Trends Genet 19: 362–365.
- 35 Menasse R, Hedwall PR, Kraetz J, Pericin C, Riesterer L, Sallmann A, Ziel R, Jaques R. 1978. Pharmacological properties of diclofenac sodium and its metabolites. Scand J Rheumatol Suppl 22: 5–16.
- 36 Fortpied J, Maliekal P, Vertommen D, Van Schaftingen E. 2006. Magnesium-dependent phosphatase-1 is a protein-fructosamine-6-phosphatase potentially involved in glycation repair. J Biol Chem 281: 18378–18385.
- 37 Fox GA. 1991. Practical causal inference for ecoepidemiologists. J Toxicol Environ Health 33: 359–373.
- 38 Li Y-J, Oliveira SA, Xu P, Martin ER, Stenger JE, Scherzer CR, Hauser MA, Scott WK, Small GW, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Jankovic J, Goetz CG, Mastaglia F, Middleton LT, Roses AD, Saunders AM, Schmechel DE, Gullans SR, Haines JL, Gilbert JR, Vance JM, Pericak-Vance MA. 2003. Glutathione S-transferase omega-1 modifies age-at-onset of Alzheimer disease and Parkinson disease. Hum Mol Genet 12: 3259–3267.
- 39 Hänsch G, Seitz M, Martinotti G, Betz M, Rauterberg E, Gemsa D. 1984. Macrophages release arachidonic acid, prostaglandin E2, and thromboxane in response to late complement components. J Immunol 133: 2145–2150.
- 40 Takano T, Cybulsky AV, Yang X, Aoudjit L. 2001. Complement C5b-9 induces cyclooxygenase-2 gene transcription in glomerular epithelial cells. Am J Physiol Renal Physiol 281: F841–850.
- 41 de Beer MC, Kindy MS, Lane WS, de Beer FC. 1994. Mouse serum amyloid A protein (SAA5) structure and expression. J Biol Chem 269: 4661–4667.
- 42 Kullgren A, Samuelsson LM, Larsson DGJ, Björnsson BT, Bergman EJ. 2010. A metabolomics approach to elucidate effects of food deprivation in juvenile rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 299: R1440–R1448.